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ABSTRACT  
 
Quasi-tightly-coupled (QTC) GNSS-INS integration is a 
method of loosely-coupled integration that has the salient 
characteristics of a tightly-coupled integration. This 
method is intended for the integration of an existing 
GNSS navigation engine into a GNSS-INS closed-loop 
configuration with little or no modification of the GNSS 
navigation engine. The method of integration uses the 
range measurement model matrix typically used to 
compute dilutions of precision (DOP) to identify the 
observable subspace in the time-space frame generated by 
the available satellites and project the loosely-coupled 
INS-GNSS Kalman filter position measurement into this 
subspace. 
 

INTRODUCTION  
 
Quasi-tightly-coupled (QTC) GNSS-INS integration was 
introduced in [1] as an enhanced method of loosely-
coupled integration that has the salient characteristic of 
continued aiding with fewer than four satellites that a 
tightly-coupled integration typically exhibits. This method 
of integration was introduced to meet the oft-times 
requirement to integrate an existing and possibly 
sophisticated GNSS navigation engine into a GNSS-INS 
configuration with little or no modifications to the engine. 
Such a requirement might arise if the GNSS navigation 
engine is an RTK engine that performs well as a 
consequence of a sophisticated algorithm implementation, 
is well-tested in its commercial field of use, and is subject 

to tight software configuration control so that major 
modifications are costly and time-consuming. Another 
reason for considering QTC integration is the requirement 
for the GNSS navigation engine to operate independently 
of a GNSS-INS integration in case inertial data is not 
available or is interrupted. 
 
The QTC integration method was presented in [1] using a 
simple epoch-by-epoch least squares adjustment (LSA) as 
the GNSS navigation engine to maintain a simple analysis 
while conveying the key concepts. QTC integration is 
however likely to be used with more sophisticated GNSS 
navigation engines such as a Kalman filter designed for 
RTK positioning. It was assumed but never shown in [1]  
that the same QTC integration method also applies to a 
Kalman filter based GNSS navigation engine. This paper 
removes this deficiency by presenting an analysis of the 
QTC integration method when the GNSS navigation 
engine is a Kalman filter and then by comparing the 
respective performances of a QTC integration and a 
tightly-coupled integration. In this sense this paper is a 
continuation of the development started in [1] . 
 
The common attribute of a least squares adjustment and a 
Kalman filter is the range measurement model matrix that 
contains the satellite geometry. A rank deficient 
measurement model due to an insufficient number of 
satellites defines an unobservable position-time subspace 
in which either estimator can’t produce a fully constrained 
position-time solution. In a tightly-coupled integration 
this subspace is automatically handled in the aided INS 
(AINS) Kalman filter. QTC integration is designed to 
handle such a satellite deficiency in a similar manner. 
 
A QTC integration achieves continued aiding with fewer 
than four satellites using a loosely coupled AINS Kalman 
filter via two functional additions to a loosely coupled 
integration. These are INS position seeding of the GNSS 
navigation engine and an observables subspace constraint 
(OSC) in the INS-GNSS position measurement in the 
AINS Kalman filter. INS position seeding sets the a priori 
position of the GNSS navigation engine to a predicted 
antenna position computed from the current INS position 
and attitude solution. The  GNSS navigation engine then 
computes an updated position as a correction of the a 
priori antenna position using the estimated position error 
from its GNSS Kalman filter. An unobservable dimension 



in the GNSS Kalman filter solution due to insufficient 
satellites for full observability of position-time errors will 
contain uncorrected INS errors that appear in the antenna 
position solution sent to the AINS Kalman filter. The 
OCS blocks the uncorrected INS position errors from 
appearing in the loosely-coupled INS-GNSS position 
measurement constructed by the AINS Kalman filter. 
 

 
Figure 1: QTC GNSS-INS architecture 

Figure 1 shows the QTC integration architecture. The one 
visible difference from a loosely-coupled integration is 
the a priori position solution from the INS to  the GNSS 
navigation engine for implementing the INS position 
seeding function. Not visible is the OSC that occurs in the 
AINS Kalman filter’s INS-GNSS position and velocity 
measurements. 
 
INS POSITION SEEDING 
 
The GNSS navigation engine in Figure 1 is a GNSS 
Kalman filter that processes rover receiver pseudorange 
observables from m satellites. Such a GNSS Kalman filter 
typically has a state vector  
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where dynx  is the state vector of a dynamics model that 
describes the antenna position and receiver clock error 
and possibly other navigation parameters such as the 
antenna velocity error and receiver clock drift, and measx  
contains the GNSS range error components such as carrier 
phase ambiguities, atmosphere delays and multipath 
errors of the different measurement models that the GNSS 
Kalman filter constructs. In the context of QTC 
integration, an elaborate vehicle dynamics model 
describing the antenna velocity and acceleration is 
redundant. INS position seeding sets the a priori  antenna 
position to the INS predicted antenna position prior to 
each Kalman filter measurement update, so that the GNSS 
Kalman filter estimates the error in this a priori antenna 
position. The GNSS Kalman filter typically does not have 
an INS error model that describes the a priori position 
errors. Consequently the GNSS Kalman filter treats the a 
priori antenna position error as uncorrelated with the 
estimated position and clock error from the previous 
Kalman filter epoch and so throws the previously 
estimated position and clock error away. 
 
For simplicity and without loss of generality, a simple 
GNSS Kalman filter is analyzed here in which the 
complete GNSS Kalman filter state x  is given by  
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where G G Gr r rδ = −  

  is the antenna position error, and Tδ  
is the receiver clock error. This is in fact the same state as 
was used in the LSA in [1]. 
 
The GNSS Kalman filter constructs m undifferenced 
pseudorange measurements whose measurement vector 
equation is given by 
 
 z Hx η= +      (3) 
 
where z  and H are respectively given by 
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where i i Gr r r= − 



  is the predicted range between satellite 

position ir
  and the a priori  antenna position Gr



 , ir  is the 
GNSS range measurement for satellite i, iu  is the unit 
line of sight vector from the rover antenna to satellite i, 
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and η  is a vector of uncorrelated Gaussian measurement 

noises with covariance [ ]1 mR diag r r=  . 
 
The a priori antenna position at each epoch is given by 
 
  G INS INS IAr r r l= = +



  

     (5) 
 
where INSr  is the INS position and IAl



 is the lever arm 
vector from the INS position to the GNSS antenna 
position all resolved in an appropriate navigation 
coordinate frame. IAl



 resolved in navigation frame n is 

typically computed as n n b
IA b IAl C l=
 

 where b
IAl


 is the 
measured lever arm vector resolved in the INS body 
frame b and n

bC  is the direction cosine matrix from frame 
b to frame n computed from the INS roll, pitch and 
heading solution. 
 
The a priori position computed from INS data comprises 
the true antenna position plus INS error INSrδ   comprising 
the sum of all errors in (5). 
 

INS G INSr r rδ= +  

      (6) 
 
The GNSS Kalman filter a priori state and covariance are 
therefore cast as follows at each epoch to reflect the 
unknown position and clock error that results from INS 
position seeding. 
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The GNSS Kalman filter performs a measurement update 
each epoch using the following update equations. 
 
 x̂ Kz+ =      (8) 
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With no state extrapolation of the estimated state between 
Kalman filter epochs, the observability matrix is n HΟ =  
A rank deficient range measurement model H implies that 
the estimated state (2) is not observable. We use the 
singular value decomposition (SVD) to characterize the 
kernel or null space ( )Ker H  and the family of non-
unique solutions [5], [6]. The SVD of an m×n matrix H is 
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where V is an n×n orthonormal matrix that spans the state 
space nℜ , U is an m×m orthonormal matrix that spans the 
measurement space mℜ and Σ is an m×n trapezoidal 
matrix with 1Σ  a diagonal matrix of non-zero singular 
values. The columns of [ ]1 2V V V=  form an 

orthonormal basis for nℜ  in which the columns of 2V  
form an orthonormal basis for ( )Ker H the null space or 
kernel of H, and the columns of 1V  form an orthonormal 

basis for ( )Ker H ⊥  the orthogonal complement of the 

kernel of H. Then for any nx∈ℜ  there exists nb ∈ℜ
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where ( )1 1 1 Kerx V b H ⊥= ∈



  and ( )2 2 2 Kerx V b H= ∈


 . 
The subscripts 1 and 2 are used hereafter to indicate this 
subspace partition of vectors. 
 
The estimation error vector ˆe x x= −    has the following 
canonical representation using (12) in a basis defined by 
the columns of V. 
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The error covariance is cast into a corresponding 
canonical representation 
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The components of (9) and (10) are evaluated as follows 
using THV U V V U= Σ = Σ . 
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The innovations covariance is given as follows for 
compactness. 
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Substituting (16), (17), (18) and (19) into (10) yields the 
following covariance update equation. 
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Similarly (9) becomes the following. 
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The updated estimated state (8) is characterized as 
follows. 
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Equations (20) and (22) show that the estimated state and 
covariance can be separated into the following observable 
and unobservable components in a basis defined by the 
columns of V. 
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The updated state in the original basis is 
 

 
1 2

1 1 2 2

ˆ ˆ ˆ

ˆ ˆ
x x x

V x V x

+ + +

+ +

= +

= +

  

 

 

    (25) 

 
and its covariance is given by (20). 
 

21
cP −  is characterized as follows after a measurement 

update from an initial state (7).  cVP PV=  contains 
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This shows that 21 0cP − =  is equivalent to the columns of 

1P V−  being in ( )Ker H ⊥ . An example where this happens 

is 2P Iσ− = . In this case 2
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  and 1 1
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 . This is 
in general not the case as can be shown with almost any 

[ ]1diag mP p p− = 
 having unequal diagonal 

elements. The GNSS Kalman filter update 
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of the unobservable sub-state is therefore sensitive to the 
a priori cross-covariance 21

cP −  between observable and 
unobservable states. Typically the a priori covariance P−  
is a diagonal matrix assembled from limited information 
and therefore does not contain a model of the cross-
correlations between states. 2x̂+  is therefore an unreliable 
estimate of 2x  that should be removed before the 
estimated state is used to compute a GNSS position 
solution. This can be accomplished by filtering the 

estimated state as follows to block 2x̂+  before it is used to 
correct the a priori GNSS position. 
 

 ( )1 1 1 1 1 1 2 2

1 1 1

ˆ ˆˆ

ˆ ˆ

T TVV x VV V x V x

V x x

+ + +

+ +

= +

= =

  

 

 



  (29) 

 
The resulting estimate now resembles the LSA estimate 
described in [1]. 
 
 
OBSERVABLE SUBSPACE CONSTRAINT 
 
The estimated position error from the estimated state (22) 
is used to compute the corrected GNSS position as 
ˆ ˆ
G G Gr r rδ += −  

  from the a priori position Gr


  given by (5) 

where Ĝrδ
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In a normal loosely-coupled integration, the AINS 
Kalman filter constructs a three dimensional loosely-



coupled INS-GNSS position measurement comprising the 
difference between the INS position and the updated 
GNSS position. The AINS Kalman filter typically 
assumes the following  measurement model in which INS 
and GNSS position errors INSrδ   and Grδ



  are uncorrelated 
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where A is the AINS Kalman filter measurement model 
matrix and IGη  is the uncorrelated measurement noise 
model. Without INS position seeding, the assumed 
measurement model (31) is fairly reliable. 
 
If m < 4 and INS position seeding is used, the AINS 
Kalman filter measurement  is in fact the following. 
 

1 1 2 2
ˆ ˆ

IG INS G INS Gz r r r rδ δ δ δ+ += − + −      (32) 
 

2Ĝrδ
+  is an unreliable estimate of 2INSrδ   and may in fact 

be zero as was the case when 2P Iσ− = . In either case the 
IG measurement and its measurement model in the AINS 
Kalman filter are inconsistent as described by the 
assumed (31) and actual (32) measurement models. This 
inconsistency results in AINS Kalman filter biases and 
can cause the AINS error regulation loop in Figure 1 to 
become unstable. 
 
The inconsistency is resolved by using the observable 
subspace constraint (OSC) matrix 1

T
dVΓ =  described in 

[1] that has the property 2 0INSrδΓ∆ = , so that the 
constrained measurement model correctly describes the 
constrained measurement. 
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The construction of the OSC matrix from [1] is reviewed 
here as follows. The following non-singular 
transformation matrix implements a single-difference 
operation on m satellites observables to construct m-1 
satellite differenced measurements 
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(34) applied to (3) and (4) gives a transformed 
measurement model D D Dz H x η= +   where 
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where T T T

i i mu u u∆ = −    for i=1,…,m-1. 
 
The Kernel Equivalence Lemma from [1] shows that 
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is equivalent to ( )Ker dr Hδ ∈  and T
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The SVD (11) applied to dH  yields matrices 1dV  and 

2dV that respectively span ( )Ker dH ⊥  and ( )Ker dH . 

This implies that 1 2 0T
d dV x =  for any ( )2 Kerd dx H∈ . The 

Kernel Equivalence Lemma applied to (32) shows that 
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and hence the OSC matrix from [1] fulfills the 
requirement for (33) to hold. 
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SIMULATION EXPERIMENT 
 
The QTC integration method has been tested extensively 
using simulation experiments, such as described here, and 
actual navigation missions. The following experiment 
taken from [1] used data recorded by an Applanix POS 
AV during an airborne survey mission whose horizontal 
trajectory is shown in Figure 2. The POS AV contained a 
tactical grade (1-10 degrees/hour gyro bias) IMU and a 
dual frequency GPS receiver. A dual frequency GPS 
reference receiver was set up at the airport at which the 
mission started and ended. The purpose of the experiment 
was to evaluate the position errors generated by each of 
the following three AINS mechanizations through partial 
GPS outages. The first AINS mechanization contained a 
sophisticated and high-performance RTK engine in a 
standard loosely coupled configuration. The second AINS 
mechanization comprised the first mechanization with 



QTC integration as shown in Figure 1. The third AINS 
mechanization comprised a tightly-coupled inertially 
aided RTK integration as described in [2] and [3].  
 
60-second partial outages to 3 satellite were simulated in 
the recorded rover receiver data as shown in Figure 3. The 
reference trajectory for the experiments was a smoothed 
best estimate of trajectory (SBET) generated by 
Applanix’s POSPac post-mission software. 
 
Figure 4 show the North position error with a loosely 
coupled non-QTC integration. The RTK engine is unable 
to recover from outages occurring when the aircraft is 
farthest from the airport and the baseline length becomes 
large (on the order of 50 kilometers). Figure 5 shows the 
North position error with QTC integration. Figure 6 
shows the North position error generated by a tightly-
coupled integration with inertially aided RTK described 
in [2] and [3] and implemented by Applanix’s POSPac 
post-mission software. Both the QTC integration and 
tightly-coupled integration yielded comparable position 
error growths during the simulated partial satellite 
outages. These plots show that QTC integration generates 
smaller position error growths during the partial outages 
and faster recoveries of RTK position accuracies when the 
outages end than does a standard loosely-coupled non-
QTC integration. 
 
Interestingly the QTC integration yielded somewhat better 
performance than the tightly coupled integration. This 
outcome is a consequence of the better performance of the 
state-of-the-art RTK engine used in the QTC integration 
when compared with the more dated kinematic ambiguity 
resolution algorithm in the version of POSPac that was 
used in this experiment. It shows that a true comparison 
of QTC and tightly-coupled integrations requires both 
integration methods to implement the same GNSS 
processing and kinematic ambiguity resolution algorithms 
(which was beyond the scope of this experiment). 
 
 

 
Figure 2: Airborne survey trajectory 

 
Figure 3: Visible GPS satellites 

 
 
 
 

 
Figure 4: North position error without QTC integration 

 
 
 
 

 
Figure 5: North position error with QTC integration 



 
Figure 6: North position error from a tightly coupled 

integration 

 
CONCLUSIONS 
 
This paper has expanded on [1] by demonstrating how the 
QTC integration method works with a GNSS navigation 
engine that is a Kalman filter. QTC integration adds INS 
position seeding to the GNSS Kalman filter and an 
observable subspace constraint to the AINS Kalman 
filter’s INS-GNSS position measurement in order to 
obtain tightly-coupled behavior from the loosely-coupled 
integration. INS seeding allows the GNSS Kalman filter 
to estimate the a priori antenna position errors in the 
observable subspace with fewer than four satellites. The 
resulting estimated position error contains an unreliable 
and possible zero antenna position error estimate in the 
unobservable position-time subspace defined by the 
deficient satellite geometry. This is the same limitation on 
position-time error observability and estimation as in a 
tightly-coupled integration. The same OSC that was used 
in [1] in a QTC integration of a least squares adjustment 
is also used here in a QTC integration of a GNSS Kalman 
filter. The OSC constrains the INS-GNSS position 
measurement construction to the observable position-time 
subspace and thereby avoids erroneous modeling of the 
INS position error in the AINS Kalman filter. 
 
This paper has expanded on some experimental results 
from [1] to demonstrate the effectiveness of QTC 
integration. The partial outage experiment showed that 
QTC integration provided lower position drift and faster 
RTK recovery than a loosely-coupled integration is 
capable of. This paper has added some experimental 
results on the comparative performances of tightly-
coupled and QTC integrations. The literature is replete 
with articles on the superior performance of a tightly-
coupled integration over a loosely coupled integration. 
The expectation is that a QTC integration will in general 
perform better than a loosely-coupled integration but not 
as well as a tightly-coupled integration. This paper has 

shown an example in which a QTC integration has 
benefited from a particularly good GNSS navigation 
engine having fast and reliable RTK positioning 
capability that is not easily built into a tightly-coupled 
integration. In such a case a QTC integration can 
outperform a tightly-coupled integration. 
 
The QTC integration method described in this paper is the 
subject of a patent [7]. 
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