

BVA303

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Product Description

The BVA303 is a digitally controlled variable gain amplifier (DVGA) is featuring high linearity using the voltage 3V supply with a broadband frequency range of 30 to 4000 MHz.

The BVA303 integrates a high performance digital step attenuator and a high linearity, broadband gain block. using the small package(4x4mm QFN package) and operating VDD 3V voltage.

and designed for use in 3G/4G wireless infrastructure and other high performance RF applications.

Both stages are internally matched to 50 Ohms and It is easy to use with no external matching components required.

A serial output port enables cascading with other serial controlled devices.

An integrated digital control interface supports both serial and parallel programming of the attenuation, including the capability to program an initial attenuation state at power-up.

Covering a 31.5 dB attenuation range in 0.5 dB steps.

The BVA303 is targeted for use in wireless infrastructure, point-to-point, or can be used for any general purpose wireless application.

Figure 1. Functional Block Diagram

Figure 2. Package Type

24-lead 4x4 mm QFN

Device Features

- Small 24-Pin 4 x 4 mm QFN Package
- Integrate DSA to Amp Functionality
- Wide Power supply range of +2.7~5.5V(DSA)
- Single Fixed +3V supply(Amp)
- 30-4000MHZ Broadband Performance
- 20.3dB Gain at 2.14GHz
- 3.0dB Noise Figure at 2.14GHz with max gain setting
- 15.7dBm P1dB at 2.14GHz
- 28.5dBm OIP3 at 2.14GHz
- Single Fixed 3V supply
- No matching circuit needed
- Attenuation: 0.5 dB steps to 31.5 dB
- Safe attenuation state transitions
- Monotonicity: 0.5 dB up to 4 GHz
- High attenuation accuracy(DSA to Amp)
 - ±(0.15 + 3% x Atten) @ 1 GHz
 - ±(0.15 + 5% x Atten) @ 2.2 GHz
 - ±(0.15 + 8% x Atten) @ 4 GHz
- 1.8V control logic compatible
- 105°C operating temperature
 - Programming modes
 - Direct Parallel
 Latched Parallel
 - Serial
- Unique power-up state selection

Application

- 3G/4G Wireless infrastructure and other high performance RF application
- Microwave and Satellite Radio
- General purpose Wireless

Table 1. Electrical Specifications¹

Pa	arameter	Condition	Min	Тур	Max	Unit
Operational Freq	Juency Range		30		4000	MHz
Gain ³		Attenuation = 0dB, at 1900MHz	20	21	22	dB
Attenuation Con	trol range	0.5dB step		31.5		dB
Attenuation Step)			0.5		dB
	30MHZ-1GHz				\pm (0.15 + 3% of atten setting)	
Attenuation Accuracy	>1GHZ-2.2GHZ	Any bit or bit combination			\pm (0.15 + 5% of atten setting)	dB
	>2.2GHz-4GHZ				\pm (0.15 + 8% of atten setting)	
Return loss	1GHZ-2.2GHZ		13	18		15
(input or output port)	2.2GHz-4GHZ	Attenuation = OdB	10	16		ав
Output Power fo	r 1dB Compression	tenuation = 0dB , at 1900MHz 16		dBm		
		Attenuation = OdB, at 1900MHz				
Output Third Ord	der Intercept Point ⁻	two tones at an output of 0 dBm per tone separated by 1 MHz.		29		dBm
Noise Figure		Attenuation = 0dB, at 1900MHz		2.9		dB
Switching time		50% CTRL to 90% or 10% RF		500	800	ns
Cumply voltage		DSA	2.7		5.5	v
Supply voltage		АМР		3		v
Supply Current			48	54	60	mA
Control Interfa	ice	Serial / parallel mode		6		Bit
Control Voltage		Digital input high	1.17		3.6	v
		Digital input low	-0.3		0.6	v
Impedance				50		Ω

 1 Device performance _ measured on a BeRex Evaluation board at 25°C, 50 Ω system, VDD=+3V, measure on Evaluation Board (DSA to AMP)

 $^2\,$ OIP3 _ measured with two tones at an output of 0 dBm per tone separated by 1 MHz.

³ Gain data has PCB insertion loss de-embedded

Table 2. Typical RF Performance¹

Parameter			Frequency			Unit
	70 ³	900	1900	2140	2650	MHz
Gain ⁴	27.2	24.7	21.1	20.3	18.2	dB
\$11	-14.7	-13.7	-18.4	-18.2	-19.2	dB
S22	-13.4	-10.7	-17.0	-16.4	-13.3	dB
OIP3 ²	31.5	31.0	29.0	28.5	27.2	dBm
P1dB	16.3	17.0	16.0	15.7	15.0	dBm
Noise Figure	2.4	2.8	2.9	3.0	3.2	dB

¹ Device performance _ measured on a BeRex evaluation board at 25°C, VDD=+3V,50 Ω system. measure on Evaluation Board (DSA to AMP)

 $^2~$ OIP3 $_$ measured with two tones at an output of 0 dBm per tone separated by 1 MHz.

 3 70MHz measured with IF application circuit.(refer to table 10.)

⁴ Gain data has PCB insertion loss de-embedded

Table 3. Absolute Maximum Ratings

Parameter	Condition	Min	Тур	Max	Unit
Supply Voltage(VCC)	Amp/DSA			3.6/5.5	V
Supply Current	Amp		110		mA
Digital input voltage		-0.3		3.6	V
Maximum input power	Amp/DSA			+12/+30	dBm
Operating Temperature	Amp/DSA	-40		85/105	°C
Storage Temperature		-55		150	°C
Junction Temperature			150		°C

Operation of this device above any of these parameters may result in permanent damage.

BVA303

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Programming Options

Parallel/Serial Selection

Either a parallel or serial interface can be used to control the BVA303. The P/S bit provides this selection, with P/S = LOW selecting the parallel interface and P/S = HIGH selecting the serial interface.

Parallel Mode Interface

The parallel interface consists of six CMOS compatible control lines that select the desired attenuation state, as shown in *Table 4*.

The parallel interface timing requirements are defined by *Figure 4* (Parallel Interface Timing Diagram), *Table 7* (Parallel Interface AC Characteristics), and switching speed (*Table 1*).

For *latched* parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per *Figure 3*) to latch the new attenuation state into the device.

For *direct* parallel programming, the Latch Enable (LE) line should be pulled HIGH. Changing attenuation state control values will change device state to new attenuation. Direct Mode is ideal for

Table 4. Truth Table

P/S	C16	C8	C4	C2	C1	C0.5	Attenuation state
0	0	0	0	0	0	0	Reference Loss
0	0	0	0	0	0	1	0.5 dB
0	0	0	0	0	1	0	1 dB
0	0	0	0	1	0	0	2 dB
0	0	0	1	0	0	0	4 dB
0	0	1	0	0	0	0	8 dB
0	1	0	0	0	0	0	16 dB
0	1	1	1	1	1	1	31.5 dB

Note: Not all 64 possible combinations of C0.5-C16 are shown in table

Serial Interface

BeRex

The serial interface is a 6-bit serial-in, parallel-out shift register buffered by a transparent latch. It is controlled by three CMOS-compatible signals: Data, Clock, and Latch Enable (LE). The Data and Clock inputs allow data to be serially entered into the shift register, a process that is independent of the state of the LE input.

The LE input controls the latch. When LE is HIGH, the latch is transparent and the contents of the serial shift register control the attenuator. When LE is brought LOW, data in the shift register is latched.

The shift register should be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data. The timing for this operation is defined by *Figure 3* (Serial Interface Timing Diagram) and *Table 6* (Serial Interface AC Characteristics).

Power-up Control Settings

The BVA303 always assumes a specifiable attenuation setting on power-up. This feature exists for both the Serial and Parallel modes of operation, and allows a known attenuation state to be established before an initial serial or parallel control word is provided.

When the attenuator powers up in Serial mode (P/S = 1), the six control bits are set to whatever data is present on the six parallel data inputs (C0.5 to C16). This allows any one of the 64 attenuation settings to be specified as the power-up state.

When the attenuator powers up in Parallel mode (P/S = 0) with LE = 0, the control bits are automatically set to one of four possible values. These four values are selected by the two power-up control bits, PUP1 and PUP2, as shown in *Table 5* (Power-Up Truth Table, Parallel Mode).

Table 5. Parallel PUP Truth Table

P/S	LE	PUP2	PUP1	Attenuation state
0	0	0	0	Reference Loss
0	0	1	0	8 dB
0	0	0	1	16 dB
0	0	1	1	31.5 dB
0	1	х	х	Defined by C0.5-C16

Note: Power up with LE = 1 provides normal parallel operation with C0.5-C16, and PUP1 and PUP2 are not active

BVA303

Figure 4. Parallel Interface Timing Diagram

Table 6. Serial Interface AC Characteristics

VDD = 3.3V with DSA only, -40°C < TA < 105°C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
f Clk	Serial data clock frequency		10	MHz
t ClkH	Serial clock HIGH time	30		ns
t ClkL	Serial clock LOW time	30		ns
tLESUP	LE set-up time after last clock falling edge	10		ns
t LEPW	LE minimum pulse width	30		ns
tSDSUP	Serial data set-up time before clock rising edge	10		ns
tSDHLD	Serial data hold time after clock falling edge	10		ns

Note: fClk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify fclk specification

Table 7. Parallel Interface AC Characteristics

VDD = 3.3V with DSA only, -40°C < TA < 105°C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
t LEPW	LE minimum pulse width	10		ns
tPDSUP	Data set-up time before rising edge of LE	10		ns
tPDHLD	Data hold time after falling edge of LE	10		ns

Table 8. 6-Bit Attenuator Serial Programming Register Map

Figure 4. Pin Configuration(Top View)

Table 9. Pin Description

Pin	Pin name	Description
1,5,7,9,17,18	GND	Ground
2	C1	Attenuation control bit, 1dB
3	C0.5⁵	Attenuation control bit, 0.5dB
4	C16 ^{3,5}	Attenuation control bit, 16dB
6	AMPOUT	RF Amp out Port
8	AMPIN	RF Amp in port
10	RF1 ¹	RF port(DSA output)
11	DATA ³	Serial interface data input
12	Clock	Serial interface clock input
13	LE^4	Latch Enable input
14	PUP1⁵	Power-up selection bit 1
15	PUP2	Power-up selection bit 2
16	VDD	Supply voltage (nominal 3V)
19	VSS/GND	External VSS negative voltage control or ground
20	P/S	Parallel/Serial mode select
21	RF2 ¹	RF port(DSA input)
22	C8	Attenuation control bit, 8dB
23	C4	Attenuation control bit, 4dB
24	C2	Attenuation control bit, 2dB
Note: 1 RE nins 10 an	d 21 must be at 0V DC	The RE pips do not require DC blocking capacitors for proper

Operation if the OV DC requirement is met

Use VssKT (pin 12) to bypass and disable internal negative voltage generator. Connect VssKT (pin 12, VssKT = GND) to enable internal negative voltage generator .2 Place a 10 kΩ resistor in series, as close to pin as possible to avoid frequency resonanc 4. This pin has an internal 2 MΩ resistor to internal positive digital supply

5. This pin has an internal 200 kΩ resistor to GND

BeRex

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Typical Performance Plot - BVA303 EVK - PCB(RF Circuit*:500~4000MHz)

Typical Performance Data @ 25°C, Maximum gain state and VDD = 3.0V unless otherwise noted

Figure 5. Gain¹ vs Frequency

Figure 7. Input Return Loss vs Frequency

Figure 9. output Return Loss vs. Frequency

Figure 10. output Return Loss vs. Frequency @ Max Gain & Min Gain¹ State

Note: 1. Min Gain was measured in the state is set with attenuation 31.5dB

* RF Circuit application refer to Table 10.

-4dB

-8dB

-16dB

4,000

@ Major Attenuation Steps

1dB -2dB

Figure 6. Gain vs Frequency

30 25

20 15

10 (9)

5 Gain 0

> -5 -10 -15

-20

Figure 8. Input Return Loss vs Frequency

@ Max Gain & Min Gain¹ State

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Typical Performance Plot - BVA303 EVK - PCB(RF Circuit*:500~4000MHz)

Typical Performance Data @ 25°C, Maximum gain state and VDD = 3.0V unless otherwise noted

Figure 11. OIP3 vs Frequency

Figure 12. P1dB vs Frequency

Figure 13. Noise Figure vs Frequency

Figure 14. Attenuation Error vs Frequency @ Major Attenuation Steps

Figure 15. Attenuation Error vs Attenuation Setting

Figure 16. 0.5dB Step Attenuation vs Attenuation Setting

* RF Circuit application refer to Table 10.

BeRex

Typical Performance Plot - BVA303 EVK - PCB(RF Circuit*:500~4000MHz)

Typical Performance Data @ 25°C, Maximum gain state and VDD = 3.0V unless otherwise noted

Figure 18. Attenuation Error @ 1.9GHz vs Temperature

Figure 19. Attenuation Error @ 2.14GHz vs Temperature

Figure 20. Attenuation Error @ 2.65GHz vs Temperature

Figure 21. Attenuation Error @ 3.9GHz vs Temperature

* RF Circuit application refer to Table 10.

BVA303

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Typical Performance Plot - BVA303 EVK - PCB(IF Circuit*:30~500MHz)

Typical Performance Data @ 25°C, Maximum gain state and VDD = 3.0V unless otherwise noted

Figure 22. Gain¹ vs Frequency

Figure 24. Input Return Loss vs Frequency

Figure 26. output Return Loss vs. Frequency

Figure 25. Input Return Loss vs Frequency @ Max Gain & Min Gain¹ State

Note: 1. Min Gain was measured in the state is set with attenuation 31.5dB

Figure 27. output Return Loss vs. Frequency @ Max Gain & Min Gain¹ State

* IF Circuit application refer to Table 10.

Note: 1. Min Gain was measured in the state is set with attenuation 31.5dB

BVA303

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Typical Performance Plot - BVA303 EVK - PCB(IF Circuit*:30~500MHz)

Typical Performance Data @ 25°C, Maximum gain state and VDD = 3.0V unless otherwise noted

HIGH@+85°C

400

500

Figure 28. OIP3 vs Frequency

Figure 29. P1dB vs Frequency

LOW@-40°C

Figure 30. Noise Figure vs Frequency

MID@+25°C

100

8.00

7.00

6.00

5.00

(90) 10 10 10

3.00

2.00

1.00

0.00

Figure 32. Attenuation Error vs Attenuation Setting

Frequancy (MHz)

300

200

* IF Circuit application refer to Table 10.

BVA303

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

-----LOWER LIMIT

30.0dB

35.0dB

Typical Performance Plot - BVA303 EVK - PCB(IF Circuit*:30~500MHz)

Typical Performance Data @ 25°C, Maximum gain state and VDD = 3.0V unless otherwise noted

Figure 35. Attenuation Error @ 70MHz vs Temperature

—— HIGH@+85°C

25.0dB

____LOW@-40'C

10.0dB

MID@+25°C

5.0dB

1.0

0.8 0.6

€ 0.4 0.2

ATTENUATION

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

0.0dB

Figure 36. Attenuation Error @ 100MHz vs Temperature

Figure 37. Attenuation Error @ 200MHz vs Temperature

15.0dB

Attenuation setting (dB)

20.0dB

Figure 39. Attenuation Error @ 400MHz vs Temperature

* IF Circuit application refer to Table 10.

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Evaluation Board PCB Information

Figure 40. Evaluation Board PCB Layer Information

	COPPER :1oz + 0.5oz (plating), Top Layer		
EM825B ER: 4.6~4.8	P.P : (0.2+0.06+0.06) TOTAL = 0.32mm		
	COPPER :1oz (GND), Inner Layer		
MTC Er:4.6	CORE : 0.73mm FINISH TICKNESS :1.55T		
	COPPER :1oz, Inner Layer		
EM825B Er:4.6~4.8	P.P : (0.2+0.06+0.06) TOTAL = 0.32mm		
	COPPER :1oz + 0.5oz (plating), Bottom Layer		

Figure 41. Evaluation Board PCB

BVA303

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Table 10. Application Circuit

Application Circuit Values Example						
Freq.	IF Circuit 50~500MHz	RF Circuit 500MHz ~ 4GHz				
C1/C3	2nF	100pF				
L3(1005 Chip Ind)	820nH	12H				

Table 11. Bill of Material - Evaluation Board

No.	Ref Des	Part Qty	Part Number	REMARK
1	C1,C3,C4,C15	4	CAP 0402 100pF J 50V	IF circuit refer to table 10
2	C5	1	CAP 0402 1000pF J 50V	
3	C6	1	TANTAL 3216 10UF 16V	
4	C22	1	TANTAL 3216 0.1uF 35V	
5	L3	1	IND 1608 12nH	IF circuit refer to table 10
7	R2,R3	2	RES 1005 J 10K	
8	R1,R4,R6	3	RES 1608 J 0ohm	
9	CON1	1	15P-MALE-D-sub con- nector	
20	U1	1	QFN4X4_24L_BVA303	
22	J1,J3	2	SMA_END_LAUNCH	

Notice: Evaluation Board for Marketing Release was set to RF circuit application

BeRex

30-4000 MHz DIGITAL VARIABLE GAIN AMPLIFIER

Figure 43. Packing outline drawing

top view

BOTTOM VIEW

SYRE	COMMON									
	DIMENSI	ONS MILL	IMETER	DIMENSIONS INCH						
Ľ	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.				
A		S	ATION '	10N 'A'						
A3	0.	203 RE	F	0	.008 REF					
b	0.20	0.25	0.30	0.008	0.010	0.012				
D	3.925	4.00	4.075	0.154	0.157	0.160				
D2	2.30	2.40	2.50	0.090	0.094	0.098				
E	3.925	4.00	4.075	0.154	0.157	0.160				
E2	2.30	2.40	2.50	0.090	0.094	0.098				
e	0	.500 BS	С	0.020 BSC						
L	0.35	0.40	0.45	0.013	0.015	0.017				

NDERCL	VARIATION 'A'						
	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
QFN	0.85	0.90	0.95	0.033	0.035	0.037	
TQFN	0.70	0.75	0.80	0.027	0.029	0.031	

NOTES :

- 1. DIMENSION AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- CONTROLLING DIMENSIONS : MILLIMETER. CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT.
- DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM. FROM TERMINAL TIP.

Figure 44. Package Marking

BeRex

BVA303

Figure 45. Tape & Reel

Packaging information: Tape Width (mm): 12 / Reel Size (inches): TBD

Device Cavity Pitch (mm): 8 / Devices Per Reel: TBD

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating:	Class 1C				
Value:	Passes<2000V				
Test:	t: Human Body Model(HBM)				
Standard:	JEDEC Standard JESD22-A114B				
MSL Rating:	Level 1 at +265°C convection reflow				
Standard	IEDEC Standard I-STD-020				

Proper ESD procedures should be followed when handling this device.

NATO CAGE code:

